Работа с Dash

После теоретического ознакомления с фреймворком Dash необходимо освоить его на практике
В качестве начала освоения в первой части данной статьи я предлагаю разобрать пример, который уже представлен на официальном сайте, а во второй части попробовать самостоятельно визуализировать какие-либо открытые данные в виде графика.

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd

df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/c78bf172206ce24f77d6363a2d754b59/raw/c353e8ef842413cae56ae3920b8fd78468aa4cb2/usa-agricultural-exports-2011.csv')


def generate_table(dataframe, max_rows=10):
    return html.Table([
        html.Thead(
            html.Tr([html.Th(col) for col in dataframe.columns])
        ),
        html.Tbody([
            html.Tr([
                html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
            ]) for i in range(min(len(dataframe), max_rows))
        ])
    ])


external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

app.layout = html.Div(children=[
    html.H4(children='US Agriculture Exports (2011)'),
    generate_table(df)
])

if __name__ == '__main__':
    app.run_server(debug=True)

Используем следующий код, который выводит исходные данные в виде таблицы:

К слову, во время запуска скрипта создается локальный хост, который и отображает нашу таблицу в отдельной страничке в браузере:

Вроде бы все данные понятны и представлены удобнее. Но можно сделать лучше!

Пробуем следующий код:

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

df = pd.read_csv('https://gist.githubusercontent.com/chriddyp/5d1ea79569ed194d432e56108a04d188/raw/a9f9e8076b837d541398e999dcbac2b2826a81f8/gdp-life-exp-2007.csv')


app.layout = html.Div([
    dcc.Graph(
        id='life-exp-vs-gdp',
        figure={
            'data': [
                dict(
                    x=df[df['continent'] == i]['gdp per capita'],
                    y=df[df['continent'] == i]['life expectancy'],
                    text=df[df['continent'] == i]['country'],
                    mode='markers',
                    opacity=0.7,
                    marker={
                        'size': 15,
                        'line': {'width': 0.5, 'color': 'white'}
                    },
                    name=i
                ) for i in df.continent.unique()
            ],
            'layout': dict(
                xaxis={'type': 'log', 'title': 'GDP Per Capita'},
                yaxis={'title': 'Life Expectancy'},
                margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
                legend={'x': 0, 'y': 1},
                hovermode='closest'
            )
        }
    )
])


if __name__ == '__main__':
    app.run_server(debug=True)

И получаем следующий график с точками-значениями:

По моему скромному мнению, фреймворк отлично справляется с визуализацией данных, а значит отлично подойдет для моей задачи!

Ну и на десерт объединим эти два вида представления данных

Кстати, это было довольно непростой задачей, ведь для этого пришлось немного покопаться в документации и понять как размещаются компоненты на странице. Вот результат:

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

df = pd.read_csv(
    'https://gist.githubusercontent.com/chriddyp/5d1ea79569ed194d432e56108a04d188/raw/a9f9e8076b837d541398e999dcbac2b2826a81f8/gdp-life-exp-2007.csv')


def generate_table(dataframe, max_rows=10):
    return html.Table([
        html.Thead(
            html.Tr([html.Th(col) for col in dataframe.columns])
        ),
        html.Tbody([
            html.Tr([
                html.Td(dataframe.iloc[i][col]) for col in dataframe.columns
            ]) for i in range(min(len(dataframe), max_rows))
        ])
    ])


app.layout = html.Div([
    generate_table(df),
    dcc.Graph(
        id='life-exp-vs-gdp',
        figure={
            'data': [
                dict(
                    x=df[df['continent'] == i]['gdp per capita'],
                    y=df[df['continent'] == i]['life expectancy'],
                    text=df[df['continent'] == i]['country'],
                    mode='markers',
                    opacity=0.7,
                    marker={
                        'size': 15,
                        'line': {'width': 0.5, 'color': 'white'}
                    },
                    name=i
                ) for i in df.continent.unique()
            ],
            'layout': dict(
                xaxis={'type': 'log', 'title': 'GDP Per Capita'},
                yaxis={'title': 'Life Expectancy'},
                margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
                legend={'x': 0, 'y': 1},
                hovermode='closest'
            )
        }
    )
])



if __name__ == '__main__':
    app.run_server(debug=True)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *